Links to specific topics

(See also under "Labels" at the bottom-left area of this blog)
[ Welcome post ] [ Installation issues ] [ WarpPLS.com ] [ Posts with YouTube links ] [ Model-driven data analytics ] [ PLS-SEM email list ]

Friday, February 23, 2024

Methods showcase - Using PLSF-SEM in business communication research


The article below discusses how one can employ PLSF-SEM in business communication research. The discussion is generic enough to guide the use of the method in other areas of research. PLSF-SEM builds on partial least squares (PLS) algorithms to generate correlation-preserving factors; the F refers to it being factor-based, as opposed to composite-based. A primer on the use of PLSF-SEM in business communication research is provided, based on an illustrative model inspired by motivating language theory, and where simulated data was analyzed with the software WarpPLS.

Kock, N. (2024). Methods showcase - Using PLSF-SEM in business communication research. International Journal of Business Communication (forthcoming: 23294884241233281).

Link to full-text file for this article:

Methods showcase - Using PLSF-SEM in business communication research.

Abstract:

Structural equation modeling (SEM) is a data analysis method that is widely used in business communication research, as well as research in many other fields, when scholars need to test complex models with multiple outcomes, interactions, or operations across different situations. To date, however, researchers have had to choose between using covariance-based SEM, and dealing with convergence problems; or composite-based SEM, and facing serious methodological issues. This article describes a way to combine strong aspects of both SEM types through PLSF-SEM. By utilizing this novel method, empirical researchers can employ several of the same tests traditionally used in covariance-based SEM, as well as new tests that rely on latent variable estimates, in a succinct and scholarly way. PLSF-SEM builds on partial least squares (PLS) algorithms to generate correlation-preserving factors; the F refers to it being factor-based, as opposed to composite-based. A primer on the use of PLSF-SEM in business communication research is provided, based on an illustrative model inspired by motivating language theory, and where simulated data was analyzed with the software WarpPLS.

Best regards to all!